Jornal Vascular Brasileiro
https://www.jvascbras.org/article/doi/10.1590/1677-5449.010116
Jornal Vascular Brasileiro
Original Article

Resultados de médio e longo prazo do tratamento endovenoso de varizes com laser de diodo em 1940 nm: análise crítica e considerações técnicas

Medium and long-term outcomes of endovenous treatment of varicose veins with a 1940nm diode laser: critical analysis and technical considerations

Luiz Marcelo Aiello Viarengo, Gabriel Viarengo, Aline Meira Martins, Marília Wechellian Mancini, Luciana Almeida Lopes

Downloads: 1
Views: 1116

Resumo

Contexto: Desde a introdução do laser endovenoso para tratamento das varizes, há uma busca pelo comprimento de onda ideal, capaz de produzir o maior dano seletivo possível com maior segurança e menor incidência de efeitos adversos. Objetivos: Avaliar os resultados de médio e longo prazo do laser de diodo de 1940 nm no tratamento de varizes, correlacionando os parâmetros utilizados com a durabilidade do desfecho anatômico. Métodos: Revisão retrospectiva de pacientes diagnosticados com insuficiência venosa crônica em estágio clínico baseado em clínica, etiologia, anatomia e patofisiologia (CEAP) C2 a C6, submetidos ao tratamento termoablativo endovenoso de varizes tronculares, com laser com comprimento de onda em 1940 nm com fibra óptica de emissão radial, no período de abril de 2012 a julho de 2015. Uma revisão sistemática dos registros médicos eletrônicos foi realizada para obter dados demográficos e dados clínicos, incluindo dados de ultrassom dúplex, durante o período de seguimento pós-operatório. Resultados: A média de idade dos pacientes foi de 53,3 anos; 37 eram mulheres (90,2%). O tempo médio de seguimento foi de 803 dias. O calibre médio das veias tratadas foi de 7,8 mm. A taxa de sucesso imediato foi de 100%, com densidade de energia endovenosa linear (linear endovenous energy density, LEED) média de 45,3 J/cm. A taxa de sucesso tardio foi de 95,1%, com duas recanalizações por volta de 12 meses pós-ablação. Não houve nenhuma recanalização nas veias tratadas com LEED superior a 30 J/cm. Conclusões: O laser 1940 nm mostrou-se seguro e efetivo, em médio e longo prazo, para os parâmetros propostos, em segmentos venosos com até 10 mm de diâmetro.

Palavras-chave

laser; varizes; terapia a laser; técnicas de ablação.

Abstract

Background: Introduction of the endovenous laser technique for treatment of varicose veins triggered a efforts to identify an ideal wavelength, capable of producing the highest possible selective damage with the greatest safety and lowest incidence of adverse effects. Objectives: Assess medium to long term results of 1940nm diode laser treatment of varicose veins, correlating parameters used with durability of the anatomic outcome. Methods: This was a retrospective study of patients diagnosed with Chronic Venous Insufficiency at clinical stages CEAP C2 to C6 who underwent thermoablative treatment of trunk varicose veins using a 1940nm wavelength laser with a radial emission optical fiber, from April 2012 to July 2015. A systematic review was conducted of electronic medical records to obtain demographic and clinical data, including postoperative follow-up duplex ultrasound findings. Results: The average age of the 41-patient sample was 53.3 years and 37 patients were women (90.2%). The average follow-up time was 803 days. The average caliber of the treated veins was 7.8 mm. The immediate success rate was 100% with an average LEED of 45.3 J/cm. The late success rate was 95.1%, and two recanalizations were observed around 12 months after ablation. There was no recanalization in veins treated with a LEED greater than 30 J/cm. Conclusions: The 1940nm laser proved to be safe and effective in venous segments up to 10 mm in diameter, with the parameters proposed, over medium to long term time follow-up.

Keywords

laser; varicose veins; endovenous ablation; thermoablation.

References

1. Pavlovic MD, Schuller-Petrovic S, Pichot O, et al. Guidelines of the first international consensus conference on Endovenous thermal ablation for varicose veins disease – ETAV Consensus Meeting 2012. Phlebology. 2015;30(4):257-73. PMid:24534341. http://dx.doi.org/10.1177/0268355514524568.

2. Goldman MP, Mauricio M, Rao J. Intravascular 1320-nm laser closure of the great saphenous vein: a 6- to 12-month follow-up study. Dermatol Surg. 2004;30(11):1380-5. PMid:15522018.

3. Pannier F, Rabe E, Maurins U. First results with a new 1470-nm diode laser for endovenous ablation of incompetent saphenous veins. Phlebology. 2009;24(1):26-30. PMid:19155338. http://dx.doi.org/10.1258/phleb.2008.008038.

4. Vuylsteke ME, Vandekerckhove PJ, De Bo T, Moons P, Mordon S. Use of a new endovenous laser device: results of the 1,500 nm laser. Ann Vasc Surg. 2010;24(2):205-11. PMid:19748212. http://dx.doi.org/10.1016/j.avsg.2009.06.024.

5. Kabnick LS, Caruso JA. No-wall touch laser fiber vs bare-tip laser fiber for endothermal venous ablation of great saphenous vein: are the results the same? In: Gerard JL, editor. Controversies and updates in vascular surgery. Torino: Edizioni Pan Minerva Medica; 2008. p. 401-2.

6. Viarengo LM, Meirelles GV, Potério-filho J. Tratamento de varizes com laser endovenoso: estudo prospectivo com seguimento de 39 meses. J Vasc Bras. 2006;5(3):184-93. http://dx.doi.org/10.1590/S1677-54492006000300006.

7. Shaĭdakov EV, Bulatov VL, Iliukhin EA, Son’kin IN, Grigorian AG, Gal’chenko MI. Optimal regimes of endovenous laser obliteration at the wavelengths of 970, 1470, and 1560 nm: the multicenter retrospective longitudinal cohort study. Phlebology. 2013;1:22-9.

8. Sroka R, Pongratz T, Esipova A, et al. Endovenous laser therapy for occlusion of incompetent saphenous veins using 1940 nm. In: Lilge L, Sroka R, editors. Proceedings of the 7th Medical Laser Applications and Laser-Tissue Interactions; 2015; Munich, Germany. San Diego: Optical Society of America; 2015. vol. 9542. Paper 95420D.

9. Kabnick L. Outcome of diferente Endovenous laser wavelengths for great saphenous vein ablation. J Vasc Surg. 2006;43(1):88-93. PMid:16414394. http://dx.doi.org/10.1016/j.jvs.2005.09.033.

10. Van den Bos R, Arends L, Kockaert M, Neumann M, Nijsten T. Endovenous therapies of lower extremity varicosities: a metaanalysis. J Vasc Surg. 2009;49(1):230-9. PMid:18692348. http:// dx.doi.org/10.1016/j.jvs.2008.06.030.

11. Doganci S, Demirkilic U. Comparison of 980 nm laser and bare-tip fibre with 1470 nm laser and radial fibre in the treatment of great saphenous vein varicosities: a prospective randomised clinical trial. Eur J Vasc Endovasc Surg. 2010;40(2):254-9. PMid:20547079. http://dx.doi.org/10.1016/j.ejvs.2010.04.006.

12. Jones L, Braithwaithe BD, Selwyn D, Cooke S. Neo- vascularisation the principal cause of varicose vein recurrence: results of a randomised trial of stripping the long saphenous vein. Eur J Vasc Endovasc Surg. 1996;12(4):442-55. PMid:8980434. http://dx.doi.org/10.1016/S1078-5884(96)80011-6.

13. Blomgren L, Johansson G, Dalbergh-Akerman A, Noren A, Brundin C, Nordstrom E. Recurrent varicose veins: incidence, risk factors and groin anatomy. Eur J Vasc Endovasc Surg. 2004;27(3):269-74. PMid:14760595. http://dx.doi.org/10.1016/j.ejvs.2003.12.022.

14. Perrin MR, Guex JJ, Ruckley CV, et al. Recurrent varices after surgery (REVAS), a consensus document. Cardiovasc Surg. 2000;8(4):233- 45. PMid:10950599.

15. Kabnick LS, Ombrellino M, Agis H, et al. Endovenous heat induced thrombosis (EHIT) at the superficial deep venous junction: a new post-treatment clinical entity, classification and potential treatment strategies. In: Proceedings of the 18th Annual Meeting of the American Venous Forum; 2006; Miami, FL. Miami: American Venous Forum; 2006.

16. Gloviczki P, Camerota AJ, Dalsing MC, et al. The care of patients with varicose veins and associated chronic venous diseases: clinical practice guidelines of the Society for Vascular Surgery and American Venous Forum. J Vasc Surg. 2011;53(5, Suppl):2S-48S. PMid:21536172. http://dx.doi.org/10.1016/j.jvs.2011.01.079.

17. Pavilovic MD, Schuller-Petrovic S, Pichot O, et al. Guidelines of the First International Consensus Conference on Endovenous Thermal Ablation for Varicose Vein Disease--ETAV Consensus Meeting 2012. Phlebology. 2014;30(4):257-73. PMid:24534341. http://dx.doi.org/10.1177/0268355514524568.

18. Marsden G, Perry MC, Kelly K, Davies AH. NICE guidedelines on the management of varicose veins. BMJ. 2013;347:f4279. PMid:23884969. http://dx.doi.org/10.1136/bmj.f4279.

19. Spreafico G, Piccioli A, Bernardi E, et al. Six-year follow-up of endovenous laser ablation for great saphenous vein incompetence. J Vasc Surg. 2013;1(1):20-5. PMid:26993888.

20. Doganci S, Demirkilic U. Comparison of 980 nm laser and bare-tip fibre with 1470 nm laser and radial fibre in the treatment of great saphenous vein varicosities: a prospective randomised clinical trial. Eur J Vasc Endovasc Surg. 2010;40(2):254-9. PMid:20547079. http://dx.doi.org/10.1016/j.ejvs.2010.04.006.

21. Schwarz T, Hodenberg E, Furtwängler C, Rastan A, Zeller T, Neumann FJ. Endovenous laser ablation of varicose veins with the 1470-nm diode laser. J Vasc Surg. 2010;51(6):1474-8. PMid:20347542. http://dx.doi.org/10.1016/j.jvs.2010.01.027.

22. Pannier F, Rabe E, Rits J, Kadiss A, Maurins U. Endovenous laser ablation of great saphenous veins using a 1470 nm diode laser and the radial fibred follow-up after six months. Phlebology. 2011;26(1):35-9. PMid:21148467. http://dx.doi.org/10.1258/phleb.2010.009096.

23. Somunyudan MF, Topaloglu N, Ergenoglu MU, Gulsoy M. Endovenous laser ablation with Tm- Fiber laser. In: Duco Jansen E, Thomas RJ, editors. Proceedings of the 22th SPIE Optical Interactions with tissue and cells; 2011. San Francisco, California; 2011. vol. 7897.

24. Hale GM, Querry MR. Optical constants of water in the 200 nm to 200 µm wavelength region. Appl Opt. 1973;12(3):555-63. PMid:20125343. http://dx.doi.org/10.1364/AO.12.000555.

25. Niemz MH. Biological and medical physics, biomedical enginnering - laser-tissue interactions, fundamentals and applications. 3rd ed. New York: Springer Berlin Heidelberg; 2007.

26. Roggan A, Friebel M, Dörschel K, Hahn A, Müller G. Optical properties of circulating human blood in the wavelength range 400-2500 nm. J Biomed Opt. 1999;4(1):36-46. PMid:23015168. http://dx.doi.org/10.1117/1.429919.

27. Bosschaart N, Edelman G, Aalders MC, van Leeuwen TG, Faber DJ. A literature review and a novel theoretical approach on the optical properties of whole blood. Lasers Med Sci. 2014;29(2):453-79. PMid:24122065. http://dx.doi.org/10.1007/s10103-013-1446-7.

28. Viarengo LM, Potério-Filho J, Potério GM, Menezes FH, Meirelles GV. Endovenous laser treatment for varicose veins in patients with active ulcers: measurement of intravenous and perivenous temperatures during the procedure. Dermatol Surg. 2007;33(10):1234-42, discussion 1241-2. PMid:17903157.

29. Dzieciuchowicz L, Krasinski Z, Gabriel M, Espinosa G. A prospective comparison of four methods of endovenous thermal ablation. Pol Przegl Chir. 2011;83(11):597-605. PMid:22246092. http://dx.doi.org/10.2478/v10035-011-0095-4.

30. Van den Bos R, Arends L, Kockaert M, Neumann M, Nijsten T. Endovenous therapies of lower extremity varicosities: a metaanalysis. J Vasc Surg. 2009;49(1):230-9. PMid:18692348. http:// dx.doi.org/10.1016/j.jvs.2008.06.030.

31. Malskat WS, Poluektova AA, van der Geld CW, et al. Endovenous laser ablation (EVLA): a review of mechanisms, modeling outcomes, and issues for debate. Lasers Med Sci. 2014;29(2):393-403. PMid:24366291. http://dx.doi.org/10.1007/s10103-013-1480-5.

32. Biesman BS, Khan J. Laser incisional surgery. Clin Plast Surg. 2000;27(2):213-20, x. PMid:10812521.

33. Vuylsteke ME, Mordon SR. Endovenous laser ablation: a review of mechanisms of action. Ann Vasc Surg. 2012;26(3):424-33. PMid:22305475. http://dx.doi.org/10.1016/j.avsg.2011.05.037.

34. Proebstle TM, Sandhofer M, Kargli A, et al. Thermal damage of the inner vein wall during endovenous laser treatment: key role of energy absorption by intra-vascular blood. Dermatol Surg. 2002;28(7):596-600. PMid:12135514.

35. Proebstle TM, Lehr HA, Kargli A, et al. Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser. J Vasc Surg. 2002;35(4):729-36. PMid:11932671. http://dx.doi.org/10.1067/mva.2002.121132.

36. van den Bos RR, van Ruijven PW, van der Geld CW, van Gemert MJ, Neumann HA, Nijsten T. Endovenous simulated laser experiments at 940 nm and 1470 nm suggest wavelength-independent temperature profiles. Eur J Vasc Endovasc Surg. 2012;44(1):77-81. PMid:22621979. http://dx.doi.org/10.1016/j.ejvs.2012.04.017.

37. Van den Bos RR, Kockaert M, Neumann HA, et al. Heat conduction from the exceedingly hot fiber tip contributes to the endovenous laser ablation of varicose veins. Lasers Med Sci. 2009;24(2):247-51. PMid:19219485. http://dx.doi.org/10.1007/s10103-008-0639-y.

38. Vuylsteke M, Liekens K, Moons P, Mordon S. Endovenous laser treatment of saphenous vein reflux: how much energy do we need to prevent recanalizations? Vasc Endovascular Surg. 2008;42(2):141-9. PMid:18238860. http://dx.doi.org/10.1177/1538574407311107.

39. Disselhof BC, Rem AI, Verdaasdonk RM, et al. Endovenous laser ablation: an experimental study on the mechanism of action. Phlebology. 2008;23(2):69-76. PMid:18453482. http://dx.doi.org/10.1258/phleb.2007.007038.

40. Vuylsteke ME, Martinelli T, Van Dorpe J, Roelens J, Mordon S, Fourneau I. Endovenous laser ablation: the role of intraluminal blood. Eur J Vasc Endovasc Surg. 2011;42(1):120-6. PMid:21524926. http://dx.doi.org/10.1016/j.ejvs.2011.03.017

Sociedade Brasileira de Angiologia e Cirurgia Vascular (SBACV)"> Sociedade Brasileira de Angiologia e Cirurgia Vascular (SBACV)">
5ce590fc0e882555068b4567 jvb Articles

J Vasc Bras

Share this page
Page Sections