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Introduction

The last decades were marked by the increased pre-
valence of cardiovascular risk factors, such as sedentary 
lifestyle, obesity, and changes in lipid profile, thereby rai-
sing the incidence of chronic degenerative diseases, such as 
hypertension, type 2 diabetes mellitus, and atherosclerosis.1 
Some vascular diseases greatly compromise blood flow and 
oxygenation of different tissues, causing poor wound hea-
ling, infection, and pain, which may result in amputation 
mainly of the lower limbs, thus representing an important 
cause of death.2 Venous insufficiency and peripheral arterial 

occlusive disease have a high prevalence in the population, 
especially among the elderly, affecting about 10-40%, and 
the etiopathogenesis of both conditions is closely associated 
with endothelial dysfunction.2,3

Evidence shows that aerobic physical training promotes 
beneficial effects on the prevention and treatment of cardio-
vascular diseases and endocrine/metabolic disorders, such as 
hypertension, diabetes mellitus, dyslipidemia, and atheroscle-
rosis.4 One of the mechanisms by which physical exercise pro-
motes these effects is associated with increased blood flow on 
the vessel wall, resulting in increased production and/or bio-
availability of nitric oxide (NO) in vascular smooth muscle.5,6 
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Physical exercise promotes a direct impact on vascular 
function, with significant beneficial effects on the patient’s 
quality of life.4 Studies report that patients with peripheral 
arterial occlusive disease start to feel less pain and increase 
walking distance without claudication in response to physi-
cal exercise, significantly reducing mortality among these pa-
tients.7-9 Although there are drugs that also improve walking 
ability without claudication, the results are still modest when 
compared to supervised exercise programs associated with 
smoking cessation.10 In post-surgical varicose vein patients, 
physical exercise appears to be able to restore microvascular 
endothelial function to levels observed in age-matched heal-
thy controls, even in the first minutes after exercise.11

In addition to acting on endothelial cells, physical exer-
cise reduces sympathetic activity and increases parasym-
pathetic activity, leading to an improvement in vascular 
tone.12 Physical exercise also contributes to morphological 
changes of the vessels, modulating the growth of vascular 
smooth muscle cells, the formation of endothelial cells, and 
apoptosis reduction and promoting angiogenesis.6 There 
are reports of improvement in muscle oxidative activity 
in patients with peripheral arterial occlusive disease via 
decreased concentration of short-chain acylcarnitine, an 
intermediate of oxidative metabolism,13 which contributes 
to increase the walking distance without claudication in pa-
tients with peripheral arterial occlusive disease performing 
exercise training. 

Adrenergic receptors are also implicated in vascular 
activity. Stimulation of α and β receptors in response to ex-
posure to their agonists promotes constriction or relaxation 
of arteries and veins.NO production by endothelial cells is 
partly mediated by activation of β-adrenergic receptors.14 
However, little is known about the role that β-adrenergic 
receptors play in blood vessels and the influence of physi-
cal exercise on these receptors in healthy individuals or pa-
tients with different pathological conditions, such as athe-
rosclerosis, hypertension and diabetes mellitus. 

Therefore, this review approaches the involvement of 
β-adrenergic receptors in vasorelaxation, the effects of phy-
sical exercise on the relaxant response, and the molecular 
mechanisms involved. The study of β-adrenergic receptors 
offers an interesting field of study in the area of vascular 
physiology, which might open new perspectives in the pre-
vention and/or treatment of vascular diseases of different 
etiologies. 

Vascular smooth muscle and endothelium

Arterial vessels usually have three layers: the intima, 
which is in contact with blood elements and consists mainly 

of endothelial cells; the media, composed of smooth muscle 
cells; and the adventitia, composed of fibrous connective 
tissue, which is the outer coat of the artery. Smooth mus-
cle cells are often spindle-shaped with larger diameters in 
the core region. The sarcoplasmic reticulum, less developed 
compared to reticula of other types of muscle cells, is clo-
sely associated with the plasma membrane, which explains 
its involvement in Ca2+ signaling mechanisms and muscle 
contraction. The activation of this biochemical cascade of 
vascular smooth muscle contraction occurs through bin-
ding of contractile agents, such as norepinephrine, pheny-
lephrine and endothelin, to specific membrane receptors 
present in the muscle cell. These receptors, in turn, activate 
a protein called G protein that stimulates phospholipase C, 
present in the cell membrane, which catalyzes the forma-
tion of second messengers from membrane phospholipids 
generating inositol-1,4,5-triphosphate (IP3) and diacyl-
glycerol (DAG). IP3 binds to its receptors located in the 
sarcoplasmic reticulum, releasing to the cytosol Ca2+ ions 
present within this organelle. The DAG molecule activates 
a protein called protein kinase C (PKC), which, in turn, 
phosphorylates proteins bound to L-type calcium channels, 
favoring the influx of extracellular Ca2+ to the intracellular 
medium. These two messengers cause an elevation in Ca2+ 
concentration, enabling actin-myosin interaction and pro-
ducing contraction of vascular smooth muscle.15 

The relaxation of vascular smooth muscle is triggered 
by different agents produced by endothelial cells, including 
prostacyclin, endothelium-derived hyperpolarizing factor 
(EDHF), and NO. NO is considered the most potent va-
sodilator produced by the endothelium, and control of its 
production is directly related to various diseases, such as 
hypertension, atherosclerosis, and coronary artery disea-
se.16 Several mediators and neurotransmitters can promote 
the release of NO by endothelial cells, such as acetylcholine, 
bradykinin and norepinephrine, through activation of its 
specific receptors.

More recently, hydrogen peroxide (H2O2) and hydro-
gen sulfide (H2S) have been highlighted in vascular research 
as important mediators in the relaxant response of different 
vessels.17,18 Thus, the discovery of these molecules in vascu-
lar function opens a relevant field on the therapeutic poten-
tial of thromboembolic disease. 

β-adrenergic receptors

Adrenergic receptors were initially divided into two bro-
ad categories, α and β. Subsequently, they were subdivided 
into subtypes α1, α2, β1, β2, and β3 by using subtype-selective 
antagonists and sequencing of amino acids that participate in 
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their protein structures. α-adrenergic receptors are further 
subdivided into α1A, α1B, α1D, α2A, α2B, and α2C.19-21 

β-adrenergic receptors are present in different cells, 
acting on a variety of functions, including modulation of 
hormone release, metabolic control, and cardiovascular 
regulation. Stimulation of β-adrenergic receptors, in the 
islets of Langerhans, increases glucose in humans, thus β2-
adrenergic agonists are used in the treatment of hypoglyce-
mia.22,23 In adipocytes, β3 receptors have been shown to act 
on leptin release.24 Moreover, the balance between lipoge-
nesis and lipolysis is associated with stimulation of α- and 
β-adrenergic receptors, respectively.25

Particularly in the cardiovascular system, β-adrenergic 
receptors promote positive cardiac chronotropic and ino-
tropic response (increasing heart rate and contractile force, 
respectively) and vasodilation. These actions are triggered 
by the binding of catecholamines (epinephrine and nore-
pinephrine, released from autonomic fibers) to different 
β-adrenergic receptor subtypes present in cardiac muscle 
cells and blood vessels. Currently, at least three β-adrenergic 
receptor subtypes are recognized: β1, β2, and β3. β1 and β2 
receptors were the first to be classified based on the use of 
subtype-selective agonists and antagonists.26 β3-adrenergic 
receptors were first described in adipocytes,27 and their 
presence was subsequently demonstrated in cardiac tissue, 
mediating chronotropism,28 and also in blood vessels, pro-
moting vasodilation.14 The classification of β-adrenergic 
receptors was possible through the synthesis of selective 
agonists, such as BRL 37344 and CL 316243.29,30 The exis-
tence of a fourth β-adrenergic receptor, called β4, which 
would mediate muscle glucose uptake and cardiac chrono-
tropism and inotropism in humans and rats, was proposed 
by various authors.31-33 However, other studies report that 
β1 receptors may present an altered conformational state, 
in which they lose affinity for their specific ligands and start 
to have affinity for other agonists that activate β3 and also 
β4 receptors, such as the agonist CGP 12177.34-38 Thus, the 
existence of β4-adrenergic receptor remains unclear. 

The affinity and efficacy of β-adrenergic drugs may 
also vary depending on the conformational state of recep-
tors and their mechanisms for coupling to proteins and se-
cond messengers present within the cells that constitute the 
tissue.39,40 The density of β-adrenergic receptors also varies 
greatly among different cells and tissues and according to 
the species studied.41-44

Vascular β-adrenergic receptors

Early studies investigating vascular beds have shown 
the existence of two β-adrenergic receptor subtypes, β1 and 

β2, in different arteries and veins. It was observed that the 
vasodilator response was mediated predominantly by β2-
adrenergic receptors compared with β1-receptor subtypes, 
with an order of potency of epinephrine > norepinephrine 
> phenylephrine,45-47 although this classification of potency 
does not apply to all vascular beds.5 Some studies show that 
β1-adrenergic receptors also promote vasodilation,48,49 whe-
reas other studies show that β3-receptor subtypes participa-
te in the vasodilator response of arteries of various species, 
such as human coronary arteries,14,50 rat aorta,51 and canine 
pulmonary arteries.52-54 In rat aorta, it was demonstrated 
that some relaxant responses appear to be mediated by a 
population of atypical receptors (presumably β4), throu-
gh the use of conventional agonists/antagonists that sti-
mulate β1-, β2-, and β3-receptor subtypes.55-57 On the other 
hand, other studies failed to confirm the participation of 
β3-adrenergic receptors and of this atypical receptor (β4) in 
this preparation.58,59In rat mesenteric arteries, β4-adrenergic 
receptor also seems to be present,60 but these data were not 
confirmed in a subsequent study in these arteries.48

Studies involving femoral and brachial arteries are scar-
ce compared to more central and larger arteries, such as the 
aorta and mesenteric artery. In one of these few studies, the 
presence of β1- and β2-adrenergic receptors was observed 
through the use of selective agonists/antagonists in porcine 
femoral artery.61 On the other hand, in rabbit femoral arte-
ries, only β2-receptor subtypes were shown to mediate the 
vasodilator response.62

Mechanism of action of β-adrenergic receptors

The multiple intracellular signaling pathways in 
response to the activation of β-adrenergic receptors in 
blood vessels modify according to the β-adrenoceptor 
subtype that is mediating relaxant responses and to the 
vascular bed studied.61 Although the activation of cyclic 
adenosine monophosphate (cAMP) is the classic pathway 
for the vasodilator response to β-adrenergic stimulation, 
dependent and independent mechanisms of formation of 
this second messenger contribute to the relaxant respon-
se induced by the activation of these receptors.63,64 For 
details, see Figure 1.

Signaling pathway: cAMP-protein kinase A

Adrenoceptors belong to a superfamily of membra-
ne receptors closely related and coupled to G proteins. 
All these proteins share a common peptide structure, 
in which the amino-terminal portion (N), extracellu-
larly, is connected to the carboxyl-terminal chain (C) 
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intracellularly by seven transmembrane domains. The 
relative size of N- and C-terminal chains and of the 
third intracellular loop varies considerably from re-
ceptor to receptor.65,66 The third intracellular loop of 
β-adrenoceptors is the site for coupling of these recep-
tors to G protein. G proteins are heterotrimers, consis-
ting of one hydrophilic α-subunit and two hydrophobic 
subunits, β and γ. In the absence of agonists, when G 
protein is inactive, a molecule of guanosine diphospha-
te (GDP) is bound to the α-subunit, forming a complex 
associated with β- and γ-subunits. In the presence of 
agonists, the activated receptor interacts with G protein 
and induces the conversion of GDP into guanosine tri-
phosphate (GTP) in the α-subunit. After binding to GTP, 
the α-subunit dissociates from βγ-subunits and becomes 
active. The α-subunit remains free until GTP hydroly-
sis and formation of GDP occurs, leading to its reasso-
ciation with βγ-subunits. The α-subunit of Gs protein, 
when activated, leads to stimulation of adenylyl cyclase, 
which leads to the formation of cAMP second messenger 
from ATP breakdown. cAMP activates protein kinase A 
that will promote reduction in intracellular Ca2+ concen-
tration in vascular smooth muscle cells, with consequent 
vasodilation.66,67 For details, see Figure 1.

Signaling pathway by activation of calcium-
dependent potassium channels

Maintenance of relaxant activity of the aorta in res-
ponse to isoprenaline, even in the presence of SQ 22,536 
(an adenylyl cyclase inhibitor), supports the existence of 
cAMP-independent mechanism in certain vessels.51 In 
addition, relaxation is abolished in the presence of iberioto-
xin, a K+ channel blocker, suggesting the involvement of lar-
ge-conductance Ca2+-activated K+ channels (MaxiK). These 
data are consistent with a previous study that demonstrated 
the importance of K+ channels in the relaxant response of 
the basilar artery of the guinea pig.68 Additionally, relaxa-
tion was shown to be dependent on MaxiK channels only 
for responses mediated by β1- and β2-adrenergic receptors, 
whereas, for β3 receptors, Kv channels do not appear to be 
involved.51 

The mechanism by which activation of β-adrenergic 
receptors promotes relaxation is carried out through the 
activation and opening of K+ channels, allowing their ex-
tracellular release, which, in turn, causes reduction in 
membrane potential, leading to cell hyperpolarization. This 
results in the closure of voltage-dependent Ca2+ channels. 
Ca2+ channel closure by membrane hyperpolarization cau-
ses a reduction in the Ca2+-calmodulin complex and in the 
phosphorylation of the myosin light chain, leading to rela-
xation.10 For details, see Figure 1.

Signaling pathway: nitric oxide-cGMP 

Another signaling pathway of β-adrenergic receptor-
mediated, cAMP-independent relaxation is the endo-
thelial pathway. Vasodilator response by stimulation of 
β-adrenergic receptors has been shown to be partially69,70 
or completely14 inhibited by endothelium removal or in 
the presence of NO synthase inhibitors, such as L-NAME. 
Furthermore, inhibition of soluble guanylate cyclase in 
vessels without endothelium eliminates the vasodilator res-
ponse, whereas addition of sodium nitroprusside restores 
vasorelaxation. Thus, these studies show that NO produced 
by endothelial cells is involved in β-adrenoceptor-induced 
relaxation.

The mechanisms by which β-adrenergic receptors pro-
mote NO release seem to involve several signaling pathways, 
such as mitogen-activated protein kinase (MEK), p42/p44 
mitogen-activated protein kinase (MAPK) or ERK1/2, and 
phosphatidylinositol 3-kinase (PI3K), both in humans and 
laboratory animals.71-73 The activation of these enzymes by 
β-adrenergic receptors leads to activation of endothelial 
NO synthase (eNOS) present in endothelial cells, which, 

Figure 1 – Mechanisms by which β-adrenergic receptors promote va-
sorelaxation.

Classic pathway of G-protein activation of β-adrenergic receptors, activation of adenylyl 
cyclase, and formation of cAMP, which, in turn, activates protein kinase A (panel B). Two 
other pathways include activation of a variety of proteins that activate eNOS and result 
in NO formation (panel A) and opening of potassium channels, promoting membrane 
hyperpolarization, which, in turn, promotes the closure of voltage-dependent calcium 
channels (panel C). Both the classic pathway, cAMP formation, and voltage-dependent 
calcium channel activating pathway occur in vascular smooth muscle, whereas NO 
formation occurs in the endothelium.
BAR = β-adrenergic receptors; eNOS = endothelial nitric oxide synthase; NO = nitric 
oxide; α, β, and γ = G protein subunits; KC = potassium channels; CC = voltage-
dependent calcium channels.
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in turn, will promote oxidation of a terminal nitrogen of 
the guanidine group of L-arginine, forming equimolar 
amounts of NO and L-citrulline. Once formed, NO diffuses 
rapidly from endothelial to smooth muscle cells, where it 
interacts with the heme group of soluble guanylate cyclase, 
stimulating its catalytic activity and leading to the forma-
tion of cyclic guanosine monophosphate (cGMP), which, in 
turn, reduces intracellular Ca2+ levels. For details, see Figure 
1. The mechanisms by which NO/cGMP pathway induces 
vasodilation include inhibition of IP3 generation, increased 
sequestration of cytosolic Ca2+, dephosphorylation of the 
myosin light chain, inhibition of Ca2+ influx, protein kina-
se activation, stimulation of membrane Ca2+-ATPase, and 
opening of K+ channels.74 

Phosphodiesterases and vascular disease

The importance of cAMP and cGMP as mediators of 
various cellular functions, including regulation of vascular 
tone, proliferation of smooth muscle cells, and inhibition of 
platelet adhesion and aggregation, has given rise to several 
studies for the development and synthesis of various com-
pounds in order to increase or control intracellular levels 
as a treatment for several diseases, such as erectile dysfunc-
tion, cardiac and vascular diseases.5 

Intracellular cAMP and cGMP levels are controlled 
by enzymes called phosphodiesterases, which catalyze 
hydrolysis of these mediators, leading to the formation 
of 5’cAMP and 5’cGMP, respectively. There are at least 
11 isoforms of phosphodiesterase, including phospho-
diesterases type 3 and 5, which are highly selective for 
degradation of cAMP and cGMP, respectively.75 The 
compound cilostazol, a selective inhibitor of phospho-
diesterase 3, has been widely used in clinical practice for 
the treatment of intermittent claudication in peripheral 
arterial occlusive disease, promoting increased intra-
cellular cAMP levels. The administration of cilostazol 
promotes potent vasodilation and inhibition of plate-
let aggregation, improving pain and walking ability.2,10 
Furthermore, β-adrenergic receptor activation leads to 
activation of two important second messengers, cAMP 
and cGMP, whose therapeutic target is the focus of ma-
jor drug companies, highlighting the importance of in-
vestigating the role that these receptors play in vascular 
disease. Recently, German researchers have synthesized 
the compounds BAY 41-2272 and BAY 58-2667, direct 
soluble guanylate cyclase activators, which have proven 
to be potent vasodilators with great therapeutic potential 
for vascular diseases such as thrombosis and peripheral 
arterial occlusive disease.76 

Thus, drug therapy for vascular diseases still requires 
further advances, and its association with non-pharmaco-
logical therapy, such as physical exercise, deserves attention 
within the area of angiology, since physical exercise promo-
tes important changes in the vascular system, especially in 
the endothelium.

Physical exercise and endothelial activation

Physical exercise is characterized by skeletal muscle 
contraction, and during exercise performance significant 
cardiovascular alterations occur, such as: increased blood 
flow into the muscles in activity, reduction in peripheral 
vascular resistance proportional to the increase in cardiac 
output, and, consequently, increased systolic blood pres-
sure. To adjust all cardiovascular alterations that physical 
exercise causes, there are mechanisms for neural and humo-
ral regulation. Humoral factors that will cause reduction in 
peripheral vascular resistance and, consequently, in blood 
pressure are primarily dependent on the endothelium.16

Increased pulsatile blood flow and pressure that blood 
exerts on the vascular wall produce the so-called shear 
stress, which acts on the intima of vessels where endothe-
lial cells are found. Shear stress is a powerful stimulus for 
the generation of the vasodilator agent NO in the vascu-
lar system. Associated with this phenomenon, physical 
exercise is an important stimulus to increase blood flow 
and, consequently, promotes increased NO production 
that triggers beneficial effects, such as vasorelaxation and 
inhibition of platelet aggregation, preventing diseases such 
as hypertension and atherosclerosis.6 NO plays a protec-
tive role in the atherosclerosis process by two signaling 
pathways. First, NO prevents the formation of oxidized 
LDL-cholesterol molecules, through its antioxidant action 
(which is concentration-dependent), decreasing the forma-
tion of reactive species of oxygen, which are fundamental 
for the process of oxidation of LDL-cholesterol molecules; 
second, by its inhibitory action on platelet adhesion and ag-
gregation, preventing thrombus formation and subsequent 
partial or total ischemia of the tissues involved.6 Studies 
evaluating hypercholesterolemic animals showed increased 
expression of the antioxidant enzyme superoxide dismuta-
se (SOD) and better relaxant sensitivity through vascular 
β-adrenoceptor-activated NO/cGMP pathway in chronic 
response to exercise.77,78 

The mechanisms by which shear stress promotes in-
creased NO production involves the activation of different 
membrane proteins called mechanosensitive channels. 
These mechanoreceptors may be Gs proteins, ion channels, 
caveolin, and integrins, which capture tension changes on 
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the cell wall and convert mechanical stimuli into chemi-
cal stimuli for eNOS activation.16 The pathways involved 
in this process are related to the activation of PKC, cSrc, 
and Akt/PI3K, which phosphorylate eNOS activating it.79 
Shear stress-induced NO production occurs regardless of 
Ca2+ presence, since Akt protein reduces eNOS sensitivity 
to this ion. The ability of endothelial cells to perceive and 
respond to changes in blood flow is an essential factor in 
the regulation of vascular tone and involves the activation 
of cell growth factors, promoting the remodeling of the ar-
terial wall and maintenance of endothelial integrity.6 Thus, 
one of the beneficial effects of regular physical activity is 
closely related to its ability to stimulate NO synthase by en-
dothelial cells and, consequently, to control blood pressure. 
Increased NO production also promotes antithrombotic 
effects, preventing thromboembolic diseases and atheros-
clerosis, a phenomenon that is due to inhibition of platelet 
aggregation by NO.5,6 

Effects of physical activity on vascular β-adrenergic 
sensitivity

The effects of exercise on vasomotor function have been 
extensively studied using both vasoconstrictors, such as no-
repinephrine and phenylephrine,80,81 and vasodilator agents, 
such as acetylcholine and bradykinin.82-84 Norepinephrine 
induces vasoconstriction by activating α-adrenergic recep-
tors present within vascular smooth muscle cells, whereas 
acetylcholine promotes vasodilation by activating mus-
carinic receptors present within endothelial cells. On the 
other hand, information about the effects of exercise on 
β-adrenoceptor-mediated vasodilator responses is much 
more scarce, and these few conflicting data show reduced, 
increased or no effect of physical exercise on the relaxant 
response. Most existing studies associate relaxant responses 
of β-adrenergic receptors with the aging process85-88 or car-
diovascular diseases.89-93

The first studies analyzing the involvement of vascu-
lar β-adrenergic receptors in response to physical trai-
ning date from the late 1970s and have investigated vas-
cular reactivity in response to chronic use of β-blockers 
in exercise-trained and sedentary rats.94 It was observed 
that trained animals without β-blockade showed higher 
skin temperature when exposed to 5 °C room temperatu-
re, in addition to increased vasodilator response to isopre-
naline, as judged from the increase in body temperature 
during a training period. The author suggested increased 
sensitivity of β2-adrenoceptors or decreased sensitivity 
of α-adrenoceptors as an explanation for these pheno-
mena.Subsequent studies used blood flow and coronary 

vascular resistance to access the effects of β-adrenoceptor 
blockade. It was demonstrated that the β2-adrenergic re-
ceptor selective antagonist ICI 118.551 significantly de-
creased coronary blood flow velocity and increased late 
diastolic coronary resistance in dogs during a running 
session.95 These data showed the important participation 
of β-adrenergic response in the relaxant response of co-
ronary arteries during exercise.A later study confirmed 
these results and even showed that coronary resistance 
and diameter appeared to be also affected by α-adrenergic 
receptor activity, since the application of phentolamine (a 
non-selective α-adrenoceptor antagonist) with proprano-
lol (a non-selective β-adrenoceptor antagonist) reduced 
the vasoconstrictor effect of β-adrenoceptor blockade du-
ring exercise.96 

More recently, studies have been conducted with ol-
der animals showing that exercise improved sensitivity 
of β-adrenergic receptors when the vasodilator response 
mediated by these receptors had been previously reduced 
by the aging process.97 Thus, the results showed that a 
6-week training program of 5 days/week swimming exer-
cise improved vasodilator response to the non-selective 
β-adrenoceptor agonist isoproterenol, in coronary arte-
ries, compared with the sedentary group. Another study, 
conducted with old and young rats, showed that a 10- to 
12-week treadmill program of 5 days/week running exer-
cise, with 60-minute sessions, improved vasodilator res-
ponse to isoproterenol in gastrocnemius muscle vessels 
from old rats, but not in young animals.98 Collectively, 
these studies show the beneficial effects of physical 
exercise on vascular sensitivity in the aging process. 
However, β-adrenoceptor responsiveness to exercise is 
not homogeneous, depending on several factors, such as 
the region of vascular bed to be studied (regions of diffe-
rent diameters in the same artery may respond differen-
tly to physical exercise).99Another important variable is 
the type of artery studied; resistance vessels (forearm) or 
conductance vessels (brachial artery) showed different 
responses in relation to blood flow both to endothelium-
dependent agonist (acetylcholine) and to endothelium-
independent sodium nitroprusside.96 Likewise, there 
may be differences in responses according to the animal 
studied.

Thus, studies related to relaxant responses mediated by 
β-adrenergic receptors need to be better designed regar-
ding the classification of receptors mediating vasodilator 
responses in different vessels, the role of physical exercise 
in this response, and the possible beneficial effects that the-
se receptors may play in the prevention and treatment of 
vascular diseases. 
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Conclusions

The effects of exercise on the vasodilator response me-
diated by β-adrenergic receptors are conflicting.Overall, 
previous studies show improvement in vascular reactivity 
to β-adrenoceptor agonists in response to exercise in old 
animals, but studies involving vascular diseases are scarce 
and less conclusive. For a better understanding of the effects 
of physical exercise on vascular β-adrenergic sensitivity, 
signaling pathways, such as cAMP, cGMP, and ion chan-
nels, should be considered and investigated, since factors 
such as oxidant activity and functional status of the endo-
thelium are involved in the activation of these receptors. 
Collectively, the existing data show that the area of vascular 
pathophysiology is an open field for the discovery of new 
compounds and advances in clinical practice. 
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