Jornal Vascular Brasileiro
https://www.jvascbras.org/article/doi/10.1590/1677-5449.004417
Jornal Vascular Brasileiro
Original Article

Does peripheral arterial occlusive disease influence muscle strength and exercise capacity in COPD patients?

A doença arterial periférica obstrutiva influencia a força muscular e a capacidade de exercício nos portadores de doença pulmonar obstrutiva crônica?

Natacha Angélica da Fonseca Miranda, Cássia da Luz Goulart, Audrey Borghi e Silva, Dannuey Machado Cardoso, Dulciane Nunes Paiva, Renata Trimer, Andréa Lúcia Gonçalves da Silva

Downloads: 0
Views: 406

Abstract

Background: The pathophysiology of chronic obstructive pulmonary disease (COPD) is complex and understanding of it has been changing in recent years, with regard to its multisystemic manifestations, especially peripheral dysfunction and its influence on intolerance to exercise. Objectives: To evaluate the relationship between peripheral arterial occlusive disease (PAOD) and peripheral muscle strength and exercise capacity in COPD patients. Methods: We conducted a cross-sectional study of 35 patients with COPD who were evaluated with the Ankle-Brachial Index, handgrip strength test, 1 repetition maximum (1RM) of knee extensors and flexors, and distance covered in the incremental shuttle walking test (dISWT). Results: COPD patients with coexisting PAOD had lower dominant handgrip strength test results (33.00 vs. 26.66 kgf, p = 0.02) and worse performance in the dISWT (297.32 vs. 219.41 m, p = 0.02) when compared to the COPD patients without PAOD. Strong correlations were found between the result of the handgrip strength test and both the dISWT (r = 0.78; p < 0.001) and the 1RM/knee extension (r = 0.71; p = 0.03); and also between the dISWT and both the 1RM/knee extension (r = 0.72; p = 0.02) and the 1RM/knee flexion (r = 0.92; p < 0.001). The linear regression model showed that the dISWT variable alone explains 15.3% of the Ankle-Brachial Index result (p = 0.01). Conclusion: COPD patients with PAOD exhibit reduced muscle strength and lower exercise capacity than COPD patients without PAOD.

Keywords

COPD; exercise test; exercise tolerance; peripheral arterial disease.

Resumo

Contexto: A doença pulmonar obstrutiva crônica (DPOC) apresenta uma complexa fisiopatologia e sua compreensão vem se modificando nos últimos anos, com atenção para as manifestações multissistêmicas, em especial a disfunção periférica e sua influência na intolerância ao exercício físico. Objetivo: Avaliar o impacto da doença arterial periférica obstrutiva (DAOP) na força muscular periférica e na capacidade de exercício dos portadores de DPOC. Métodos: Estudo transversal realizado com 35 portadores de DPOC, que foram avaliados pelo índice tornozelo-braquial, teste de força de preensão palmar (FPP), uma repetição máxima (1RM) de extensores e flexores de joelho, e a distância no incremental shuttle walking test (dISWT). Resultados: Portadores de DPOC com DAP coexistente apresentaram menor FPP da mão dominante (33,00 versus 26,66 kgf, p = 0,02) e pior desempenho no dISWT (297,32 versus 219,41 m, p = 0,02) quando comparados aos portadores de DPOC sem DAP. Fortes correlações foram encontradas entre a medida da FPP e a dISWT (r = 0,78; p < 0,001) e a 1RM/extensão de joelho (r = 0,71; p = 0,03); entre a dISWT e a 1RM/extensão de joelho (r = 0,72; p = 0,02) e a 1RM/flexão de joelho (r = 0,92; p < 0,001). O modelo de regressão linear identificou que a variável dISWT explica isoladamente 15,3% do resultado do índice tornozelo braquial (p = 0,01). Conclusão: Portadores de DPOC com DAOP coexistente apresentam maior perda da força muscular periférica e pior desempenho da capacidade de exercício quando comparados aos portadores de DPOC sem DAOP.

Palavras-chave

DPOC; teste de esforço; tolerância ao exercício; doença arterial periférica.

References

1. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnoses, management, and prevention of Chronic Obstructive Pulmonary Disease updated. 2016 [cited 2017 July 6]. www.goldcopd.org

2. Spruit MA, Singh SJ, Garvey C, et al, and the ATS/ERS Task Force on Pulmonary Rehabilitation. An official American Thoracic Society/European Respiratory Society Statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188(8):13-64. PMid:24127811. http://dx.doi.org/10.1164/rccm.201309-1634ST.

3. Borel B, Provencher S, Saey D, Maltais F. Responsiveness of various exercise-testing protocols to Therapeutic Interventions in COPD. Pulm Med. 2013;2013:410748. PMid:23431439. http://dx.doi.org/10.1155/2013/410748.

4. Rausch-Osthoff AK, Kohler M, Sievi NA, Clarenbach CF, van Gestel AJ. Association between peripheral muscle strength, exercise performance, and physical activity in daily life in patients with Chronic Obstructive Pulmonary Disease. Multidiscip Respir Med. 2014;9(37):37. PMid:25013723. http://dx.doi.org/10.1186/2049-6958-9-37.

5. Rondelli RR, Dal Corso S, Simões A, Malaguti C. Methods for the assessment of peripheral muscle fatigue and its energy and metabolic determinants in COPD. J Bras Pneumol. 2009;35(11):1125-35. PMid:20011849. http://dx.doi.org/10.1590/S1806-37132009001100011.

6. Pecci R, De La Fuente Aguado J, Sanjurjo Rivo AB, Sanchez Conde P, Corbacho Abelaira M. Peripheral arterial disease in patients with chronic obstructive pulmonary disease. Int Angiol. 2012;31(5):444-53. PMid:22990507.

7. Sun KS, Lin MS, Chen YJ, Chen YY, Chen SC, Chen W. Is asymptomatic peripheral arterial disease associated with walking endurance in patients with COPD? Int J Chron Obstruct Pulmon Dis. 2015;10:1487-92. PMid:26251588.

8. Chen R, Wanbing H, Zhang K, et al. Airflow obstruction was associated with elevation of brachial-ankle pulse wave velocity but not anklebrachial index in aged patients with chronic obstructive pulmonary disease. Atherosclerosis. 2015;242(1):135-40. PMid:26188536. http://dx.doi.org/10.1016/j.atherosclerosis.2015.06.052.

9. Blum A, Simsolo C, Sirchan R. Vascular responsiveness in patients with chronic obstructive pulmonary disease (COPD). Eur J Intern Med. 2013;25(4):370-3. PMid:23623702. http://dx.doi.org/10.1016/j.ejim.2013.03.017.

10. Lin MS, Hsu KS, Chen YJ, Chen CR, Chen CM, Chen W. Prevalence and risk factors of Asymptomatic Peripheral arterial disease in patients with COPD in Taiwan. PLoS One. 2013;8(5):64714. PMid:23717654. http://dx.doi.org/10.1371/journal.pone.0064714.

11. Kim ESH, Wattanakit K, Gornik HL. Using the ankle-brachial index to diagnose Peripheral Arterial Occlusive Disease and assess cardiovascular risk. Cleve Clin J Med. 2012;79(9):651-61. PMid:22949346. http://dx.doi.org/10.3949/ccjm.79a.11154.

12. Castagna O, Boussuges A, Nussbaum E, Marqueste L, Brisswalter J. Peripheral arterial disease: an underestimated aetiology of exercise intolerance in chronic obstructive pulmonary disease patients. Eur J Cardiovasc Prev Rehabil. 2008;15(3):270-7. PMid:18446087. http://dx.doi.org/10.1097/HJR.0b013e3282f009a9.

13. Makdisse M, Nascimento Neto R, Chagas ACP, et al. Cross-cultural adaptation and validation of the Brazilian Portuguese version of the Edinburgh Claudication questionnaire. Arq Bras Cardiol. 2007;88(5):501-6. PMid:17589622. http://dx.doi.org/10.1590/S0066-782X2007000500001.

14. Halty LS, Hüttner MD, Oliveira IC No, et al. Análise da utilização do Questionário de Tolerância de Fagerström (FTQ) como instrumento de medida da dependência nicotínica. J Pneumologia. 2002;28(4):180-6. http://dx.doi.org/10.1590/S0102-35862002000400002.

15. Gibson GJ, Whitelaw W, Siafakas N. Tests of overall respiratory function. ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):521-6.

16. Pereira CA, Sato T, Rodrigues SC. New reference values for forced spirometry in white adults in Brazil. J Bras Pneumol. 2007;33(4):397-406. PMid:17982531. http://dx.doi.org/10.1590/S1806-37132007000400008.

17. Norman K, Stobäus N, Kulka K, Schulzke J. Effect of inflammation on handgrip strength in the non-critically ill is independent from age, gender and body composition. Eur J Clin Nutr. 2014;68(2):155-8. PMid:24327120. http://dx.doi.org/10.1038/ejcn.2013.261.

18. Levinger I, Goodman C, Hare DL, Jerums G, Toia D, Selig S. The reliability of the 1RM strength test for untrained middle-aged individuals. J Sci Med Sport. 2009;12(2):310-6. PMid:18078784. http://dx.doi.org/10.1016/j.jsams.2007.10.007.

19. Ko SH, Bandyk DF. Interpretation and significance of ankle-brachial systolic pressure index. Semin Vasc Surg. 2014;26(2-3):86-94. PMid:24636605. http://dx.doi.org/10.1053/j.semvascsurg.2014.01.002.

20. Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/ American Thoracic Society technical standard: field walking tests in chronic respiratory disease. ERS/ATS Technical Standard. Europ Resp Soc. 2014;44(6):1428-46. http://dx.doi.org/10.1183/09031936.00150314.

21. Dourado VZ, Guerra RL, Tanni SE, et al. Reference values for the incremental shuttle walk test in healthy subjects: from the walk distance to physiological responses. J Bras Pneumol. 2013;39(2):190-7. PMid:23670504. http://dx.doi.org/10.1590/S1806-37132013000200010.

22. Rosa FW, Carmelier AA, Mayer AF, Jardim JR. Optimización de la capacidad de realización de ejercicio físico mediante uma prueba de La lanzadera por tramos con estimulación auditiva continua en pacientes com EPOC. Arch Bronconeumol. 2006;42(7):338-43. PMid:16945264. http://dx.doi.org/10.1016/S1579-2129(06)60543-0.

23. Hardinge M, Annandale J, Bourne S, et al. British Thoracic Society, BTS Home Oxygen guideline group. BTS guidelines for home oxygen use in adults. Thorax. 2015;70(1):i1-43. PMid:25870317. http://dx.doi.org/10.1136/thoraxjnl-2015-206865.

24. Van den Borst B, Slot IG, Hellwing VA, et al. Loss of quadriceps muscle oxidative phenotype and decresead endurance in patients with mild-to-moderate COPD. J Appl Physiol. 2012;114(9):1319-28. PMid:22815389. http://dx.doi.org/10.1152/japplphysiol.00508.2012.

25. Gosselink R, Troosters T, Decramer M. Distribution of muscle weakness in patients with stable chronic obstructive pulmonary disease. J Cardiopulm Rehabil. 2000;20(6):353-60. PMid:11144041. http://dx.doi.org/10.1097/00008483-200011000-00004.

26. Miranda EF, Malaguti C, Dal Corso S. Peripheral muscle dysfunction in COPD: lower limbs versus upper limbs. J Bras Pneumol. 2011;37(3):380-8. PMid:21755195. http://dx.doi.org/10.1590/S1806-37132011000300016.

27. Possani HV, Carvalho MJ, Probst VS, et al. Comparison between the reduction in muscle force in upper and lower limbs after a fatigue protocol in patients with Chronic Obstructive Pulmonary Disease (COPD). Assobraf Ciênc. 2009;1:33-4.

28. Oliveira MF, Zelt JT, Jones JH, et al. Does impaired O2 delivery during exercise accentuate central and peripheral fatigue in patients with coexistent COPD-CHF? Front Physiol. 2015;5:514. PMid:25610401. http://dx.doi.org/10.3389/fphys.2014.00514.

29. Cinarka H, Kayhan S, Gumus A, et al. Arterial stiffness measured via carotid femoral pulse wave velocity is associated with disease severity in COPD. Respir Care. 2014;59(2):274-80. PMid:23821765. http://dx.doi.org/10.4187/respcare.02621.

30. Pepera G, McAllister J, Sandercock G. Long-term reliability of the incremental shuttle walking test in clinically stable cardiovascular disease patients. Physiother. 2010;96(3):222-7. PMid:20674654. http://dx.doi.org/10.1016/j.physio.2009.11.010.

31. Zainuldin R, Mackey MG, Alison JA. Prescription of walking exercise intensity from the incremental shuttle walk test in people with chronic obstructive pulmonary disease. Am J Phys Med Rehabil. 2012;91(7):592-600. PMid:22286894. http://dx.doi.org/10.1097/PHM.0b013e31824660bd.

32. Zwierska I, Nawaz S, Walker RD, Wood RF, Pockley AG, Saxton JM. Treadmill versus shuttle walk tests of walking ability in intermitent claudication. Med Sci Sports Exerc. 2004;36(11):1835-40. PMid:15514494. http://dx.doi.org/10.1249/01.MSS.0000145471.73711.66.

5cd2e54e0e8825360a632f8e jvb Articles
Links & Downloads

J Vasc Bras

Share this page
Page Sections