Jornal Vascular Brasileiro
Jornal Vascular Brasileiro
Original Article

Remote ischemic conditioning enhances heart and brain antioxidant defense

Condicionamento isquêmico remoto melhora a defesa antioxidante do coração e do cérebro

Felipe Lobato da Silva Costa; Renan Kleber Costa Teixeira; Vitor Nagai Yamaki; André Lopes Valente; Sandro Percário; Marcus Vinicius Henriques Brito

Downloads: 0
Views: 29


Abstract: Background: Ischemia-reperfusion injury contributes to morbidity after revascularization procedures. Along with early reperfusion, tissue conditioning by alternating intervals of brief ischemia-reperfusion episodes is considered the best approach to limit tissue damage. Remote ischemic conditioning is conducted remotely, in tissues other than those under ischemia. Despite this, remote ischemic conditioning protection mechanisms are poorly understood, which can lead to misapplication.

Objectives: To assess whether remote ischemic conditioning works in the heart and brain through enhancement of cells’ antioxidant defenses and whether the response is sustained or temporary.

Methods: Twenty-one male Wistar rats were assigned to three groups (n = 7): SHAM: same procedure as the other groups, but no remote ischemic conditioning was carried out. RIC 10: heart and brain were harvested 10 minutes after the remote ischemic conditioning protocol. RIC 60: heart and brain were harvested 60 minutes after the remote ischemic conditioning protocol. The remote ischemic conditioning protocol consisted of 3 cycles of 5 min left hindlimb ischemia followed by 5 min left hindlimb perfusion, lasting 30 min in total. Heart and brain samples were used to measure the tissue antioxidant capacity.

Results: Remote ischemic conditioning increased heart and brain antioxidant capacity after 10 minutes (0.746 ± 0.160/0.801 ± 0.227 mM/L) when compared to SHAM (0.523 ± 0.078/0.404 ± 0.124 mM/L). No enhancement of heart or brain antioxidant capacity was detected 60 minutes after remote ischemic conditioning (0.551 ± 0.073/0.455 ± 0.107 mM/L).

Conclusions: Remote ischemic conditioning temporarily enhances heart and brain antioxidant defenses in male Wistar rats.


rats, ischemic conditioning, ischemia, reperfusion


Resumo: Contexto: A lesão de isquemia e reperfusão contribui para a morbidade após procedimentos de revascularização. Juntamente com a reperfusão precoce, o condicionamento tecidual através de breves episódios de isquemia e reperfusão é considerado a melhor abordagem para limitar o dano tecidual. Apesar disso, os mecanismos do condicionamento isquêmico remoto são pouco compreendidos, o que pode levar a uma aplicação incorreta.

Objetivos: Avaliar se o condicionamento isquêmico remoto funciona no coração e no cérebro através do aprimoramento da defesa antioxidante das células e se é uma resposta sustentada ou temporária.

Métodos: Vinte e um ratos Wistar foram divididos em três grupos (n = 7): SHAM, no qual não foi realizado condicionamento isquêmico; RIC 10, no qual 10 minutos após o protocolo de condicionamento isquêmico, foi realizada a coleta dos órgãos; e RIC 60, no qual 60 minutos após o protocolo de condicionamento isquêmico, foi realizada a coleta dos órgãos. O protocolo de condicionamento isquêmico remoto consistiu em três ciclos de 5 minutos de isquemia, seguidos de 5 minutos de perfusão no membro posterior esquerdo, com duração total de 30 minutos. Amostras foram usadas para medir a capacidade antioxidante do tecido.

Resultados: O condicionamento isquêmico remoto aumentou a capacidade antioxidante do coração e do cérebro após 10 minutos (0,746 ± 0,160/0,801 ± 0,227 mM/L) quando comparado ao SHAM (0,523 ± 0,078/0,404 ± 0,124 mM/L) . Sessenta minutos após o condicionamento isquêmico remoto, não foi detectado aumento da capacidade antioxidante do coração ou do cérebro (0,551 ± 0,073/0,455 ± 0,107 mM/L).

Conclusões: O condicionamento isquêmico remoto melhora temporariamente as defesas antioxidantes do coração e do cérebro em ratos Wistar.


ratos, condicionamento isquêmico, isquemia, reperfusão


1 González-Montero J, Brito R, Gajardo AI, Rodrigo R. Myocardial reperfusion injury and oxidative stress: therapeutic opportunities. World J Cardiol. 2018;10(9):74-86. PMid:30344955.

2 Hoda MN, Siddiqui S, Herberg S, et al. Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke. 2012;43(10):2794-9. PMid:22910893.

3 Zhang WX, Yin W, Zhang L, et al. Preconditioning and postconditioning reduce hepatic ischemia-reperfusion injury in rats. Hepatobiliary Pancreat Dis Int. 2009;8(6):586-90. PMid:20007074.

4 Kin H, Zhao ZQ, Sun HY, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004;62(1):74-85. PMid:15023554.

5 Chen H, Xing B, Liu X, et al. Ischemic postconditioning inhibits apoptosis after renal ischemia/reperfusion injury in rat. Transpl Int. 2008;21(4):364-71. PMid:18069925.

6 Chong J, Bulluck H, Yap EP, Ho AF, Boisvert WA, Hausenloy DJ. Remote ischemic conditioning in ST-segment elevation myocardial infarction - an update. Cond Med. 2018;1(5):13-22. PMid:30338313.

7 Yamaki VN, Gonçalves TB, Coelho JVB, Pontes RVS, Costa FLS, Brito MVH. Protective effect of remote ischemic preconditioning in the ischemia and reperfusion-induced renal injury in rats. Rev Col Bras Cir. 2012;39(6):529-33. PMid:23348651.

8 Costa FL, Yamaki VN, Goncalves TB, Coelho JV, Percario S, Brito MV. Combined remote ischemic perconditioning and local postconditioning on liver ischemia-reperfusion injury. J Surg Res. 2014;192(1):98-102. PMid:24952413.

9 Amanakis G, Kleinbongard P, Heusch G, Skyschally A. Attenuation of ST-segment elevation after ischemic conditioning maneuvers reflects cardioprotection online. Basic Res Cardiol. 2019;114(3):22. PMid:30937537.

10 Schmidt MR, Smerup M, Konstantinov IE, et al. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am J Physiol Heart Circ Physiol. 2007;292(4):1883-90. PMid:17172279.

11 Crimi G, Pica S, Raineri C, et al. Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: a randomized controlled trial. JACC Cardiovasc Interv. 2013;6(10):1055-63. PMid:24156966.

12 Candilio L, Hausenloy DJ, Yellon DM. Remote ischemic conditioning: a clinical trial’s update. J Cardiovasc Pharmacol Ther. 2011;16(3-4):304-12. PMid:21821533.

13 Szijártó A, Czigany Z, Turoczi Z, Harsanyi L. Remote ischemic preconditioning a simple, low-risk method to decrease ischemic reperfusion injury: models, protocols and mechanistic background: a review. J Surg Res. 2012;178(2):797-806. PMid:22868050.

14 Czigány Z, Turoczi Z, Kleiner D, et al. Neural elements behind the hepatoprotection of remote perconditioning. J Surg Res. 2015;193(2):642-51. PMid:25266602.

15 Lim SY, Yellon DM, Hausenloy DJ. The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res Cardiol. 2010;105(5):651-5. PMid:20449597.

16 Tamareille S, Mateus V, Ghaboura N, et al. RISK and SAFE signaling pathway interactions in remote limb ischemic perconditioning in combination with local ischemic postconditioning. Basic Res Cardiol. 2011;106(6):1329. PMid:21833651.

17 Cellier L, Tamareille S, Kalakech H, et al. Remote ischemic conditioning influences mitochondrial dynamics. Shock. 2016;45(2):192-7. PMid:26555744.

18 Costa FL, Teixeira RK, Yamaki VN, et al. Remote ischemic conditioning temporarily improves antioxidant defense. J Surg Res. 2016;200(1):105-9. PMid:26316445.

19 Miller NJ, Rice-Evans C, Davies M, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci. 1993;84(4):407-12. PMid:8482045.

20 Re R, Pellegrini R, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-7. PMid:10381194.

21 Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005;53(6):1841-56. PMid:15769103.

22 Hahn CD, Manlhiot C, Schmidt MR, Nielsen TT, Redington AN. Remote ischemic per-conditioning: a novel therapy for acute stroke? Stroke. 2011;42(10):2960-2. PMid:21836089.

23 White SK, Frohlich GM, Sado DM, et al. Remote ischemic conditioning reduces myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2015;8(1):178-88. PMid:25240548.

24 England TJ, Hedstrom A, O’Sullivan S, et al. RECAST (Remote Ischemic Conditioning After Stroke Trial): a pilot randomized placebo controlled phase II trial in acute ischemic stroke. Stroke. 2017;48(5):1412-5. PMid:28265014.

25 Gao J, Chen Q, Liu F, et al. The effects of remote ischemic conditioning in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention: a meta-analysis. Minerva Med. 2017;108(4):370-80. PMid:28217986.

5eb2f27b0e88256932d76ee1 jvb Articles
Links & Downloads

J Vasc Bras

Share this page
Page Sections