Jornal Vascular Brasileiro
https://www.jvascbras.org/article/doi/10.1590/1677-5449.200086
Jornal Vascular Brasileiro
Original Article

Estudo de anatomia comparada suína por angiotomografia: contribuições para modelos de pesquisa e treinamento em cirurgia vascular e endovascular

Comparative angiotomographic study of swine vascular anatomy: contributions to research and training models in vascular and endovascular surgery

Adenauer Marinho de Oliveira Góes Junior; Rosa Helena de Figueiredo Chaves; Ismari Perini Furlaneto; Emanuelle de Matos Rodrigues; Flávia Beatriz Araújo de Albuquerque; Jacob Hindrik Antunes Smit; Carolina Pinheiro de Oliveira; Simone de Campos Vieira Abib

Downloads: 2
Views: 71

Resumo

Resumo: Contexto: Modelos com animais de médio e grande porte permitem que pesquisadores avaliem a eficácia e a segurança de procedimentos cardiovasculares em sistemas que se assemelham à anatomia humana e podem ser usados para simular cenários para fins de treinamento. Embora modelos suínos tenham sido extensivamente utilizados, muitos fatores fisiológicos e anatômicos permanecem desconhecidos ou apenas superficialmente descritos.

Objetivos: Descrever a anatomia vascular do suíno por tomografia computadorizada, compará-la à anatomia humana e discutir a aplicação dos modelos porcinos em procedimentos abertos e endovasculares.

Métodos: Três porcos machos da raça Landrace foram submetidos a tomografia computadorizada. A anatomia vascular de pescoço, tórax, abdome e membros foi analisada e descrita; foram destacadas similaridades e divergências relevantes entre a anatomia vascular de suínos e de humanos e as implicações em procedimentos vasculares nos suínos.

Resultados: O território carotídeo, o arco aórtico e os ramos terminais da aorta em suínos apresentaram diferenças marcantes quando comparados aos de humanos. Foram detectadas compressões de veias renal e ilíaca comum, ambas à esquerda, semelhantes às encontradas nas síndromes humanas de Nutcracker e May-Thurner. Medidas vasculares (diâmetro, comprimento e ângulos) de diferentes topografias de suínos foram fornecidas.

Conclusões: Os dados fornecidos podem ser úteis para o planejamento de ensaios pré-clínicos e pesquisa básica, bem como para o refinamento do treinamento cirúrgico usando modelos suínos no campo da cirurgia vascular.

Palavras-chave

suínos, vasos sanguíneos, procedimentos cirúrgicos vasculares, anatomia comparada, procedimentos endovasculares, angiografia por tomografia computadorizada

References

1 Crisóstomo V, Sun F, Maynar M, et al. Common swine models of cardiovascular disease for research and training. Lab Anim. 2016;45(2):67-74. http://dx.doi.org/10.1038/laban.935. PMid:26814353.

2 Mangla S, Choi JH, Barone FC, et al. Endovascular external carotid artery occlusion for brain selective targeting: a cerebrovascular swine model Neuroscience. BMC Res Notes. 2015;8(1):1-6. http://dx.doi.org/10.1186/s13104-015-1714-7.

3 Siefert J, Hillebrandt KH, Kluge M, et al. Computed tomography-based survey of the vascular anatomy of the juvenile Göttingen minipig. Lab Anim. 2017;51(4):388-96. http://dx.doi.org/10.1177/0023677216680238. PMid:27932686.

4 Judge EP, Hughes JML, Egan JJ, Maguire M, Molloy EL, O’Dea S. Anatomy and bronchoscopy of the porcine lung: a model for translational respiratory medicine. Am J Respir Cell Mol Biol. 2014;51(3):334-43. http://dx.doi.org/10.1165/rcmb.2013-0453TR. PMid:24828366.

5 Bekheit M, Bucur PO, Wartenberg M, Vibert E. Computerized tomography–based anatomic description of the porcine liver. J Surg Res. 2017;210:223-30. http://dx.doi.org/10.1016/j.jss.2016.11.004. PMid:28457333.

6 Dondelinger RF, Ghysels MP, Brisbois D, et al. Relevant radiological anatomy of the pig as a training model in interventional radiology. Eur Radiol. 1998;8(7):1254-73. http://dx.doi.org/10.1007/s003300050545. PMid:9724449.

7 Sakaoka A, Koshimizu M, Nakamura S, Matsumura K. Quantitative angiographic anatomy of the renal arteries and adjacent aorta in the swine for preclinical studies of intravascular catheterization devices. Exp Anim. 2018;67(2):291-9. http://dx.doi.org/10.1538/expanim.17-0125. PMid:29353822.

8 Smith AC, Swindle MM. Preparation of Swine for the Laboratory. ILAR J. 2006;47(4):358-63. http://dx.doi.org/10.1093/ilar.47.4.358. PMid:16963815.

9 Septimus Sisson SB. The anatomy of the domestic animals. 2nd ed. Philadelphia: W.B. Saunders Company; 1930. p. 734-42.

10 Michaud F, Li N, Plantefève R, et al. Selective embolization with magnetized microbeads using magnetic resonance navigation in a controlled-flow liver model. Med Phys. 2019;46(2):789-99. http://dx.doi.org/10.1002/mp.13298. PMid:30451303.

11 Haacke N, Unger JK, Haidenhein C, Russ M, Hiebl B, Niehues SM. Pig specific vascular anatomy allows acute infrarenal aortic occlusion without hind limb ischemia and stepwise occlusion without clinical signs. Clin Hemorheol Microcirc. 2011;48(1):173-85. http://dx.doi.org/10.3233/CH-2011-1401. PMid:21876245.

12 Borger van der Burg BLS, Hörer TM, Eefting D, et al. Vascular access training for REBOA placement: a feasibility study in a live tissue-simulator hybrid porcine model. J R Army Med Corps. 2019;165(3):147-51. http://dx.doi.org/10.1136/jramc-2018-000972. PMid:30228195.

13 Florescu MC, Runge J, Lof J, et al. Surgical technique of placement of an external jugular tunneled hemodialysis catheter in a large pig model. J Vasc Access. 2018;19(5):473-6. http://dx.doi.org/10.1177/1129729818760964. PMid:29557223.

14 Kotsougiani D, Willems JI, Shin AY, Friedrich PF, Hundepool CA, Bishop AT. A new porcine vascularized tibial bone allotransplantation model: anatomy and surgical technique. Microsurgery. 2018;38(2):195-202. PMid:29131389.

15 Kloster BO, Lund L, Lindholt JS. Laparo- and thoracoscopic aortic aneurysm neck optimization and treatment of potential endoleaks type IA and II in a porcine model. Ann Med Surg. 2015;5:5-10. http://dx.doi.org/10.1016/j.amsu.2015.11.002. PMid:26793311.

16 Swindle MM. Swine in the laboratory: surgery, anesthesia, imaging and experimental techniques. 2nd ed. Boca Raton: Taylor & Francis Group; 2007. p. 214-52. http://dx.doi.org/10.1201/9781420009156.

17 Genain MA, Morlet A, Herrtage M, et al. Comparative anatomy and angiography of the cardiac coronary venous system in four species: human, ovine, porcine, and canine. J Vet Cardiol. 2018;20(1):33-44. http://dx.doi.org/10.1016/j.jvc.2017.10.004. PMid:29191414.

18 Habib CA, Utriainen D, Peduzzi-Nelson J, et al. MR imaging of the yucatan pig head and neck vasculature. J Magn Reson Imaging. 2013;38(3):641-9. http://dx.doi.org/10.1002/jmri.24003. PMid:23348984.

19 Kim SH. Doppler US and CT diagnosis of nutcracker syndrome. Korean J Radiol. 2019;20(12):1627. http://dx.doi.org/10.3348/kjr.2019.0084. PMid:31854150.

20 Sankaran L, Ramachandran R, Bala Raghu Raji V, Periasamy Varadaraju P, Panneerselvam P, Radhakrishnan PR. The role of multidetector CT angiography in characterizing vascular compression syndromes of the abdômen. Egypt J Radiol Nucl Med. 2019;50(1):1-12. http://dx.doi.org/10.1186/s43055-019-0063-2.

21 Sablón González N, Lorenzo Villalba N, Parodis López Y, González Díaz P, Boada Díaz J, Kechida M. Nutcracker syndrome. Medicina. 2019;79(2):150-3. PMid:31048282.

22 White JM, Comerota AJ. Venous compression syndromes. Vasc Endovascular Surg. 2017;51(3):155-68. http://dx.doi.org/10.1177/1538574417697208. PMid:28330436.

23 Jayaraj A, Buck W, Knight A, Johns B, Raju S. Impact of degree of stenosis in May-Thurner syndrome on iliac vein stenting. J Vasc Surg Venous Lymphat Disord. 2019;7(2):195-202. http://dx.doi.org/10.1016/j.jvsv.2018.10.001. PMid:30553783.

24 Kunio M, Wong G, Markham PM, Edelman ER. Sex differences in the outcomes of stent implantation in mini-swine model. PLoS One. 2018;13(1):e0192004. http://dx.doi.org/10.1371/journal.pone.0192004. PMid:29377941.

25 von Trotha KT, Butz N, Grommes J, et al. Vascular anatomy of the small intestine - a comparative anatomic study on humans and pigs. Int J Colorectal Dis. 2015;30(5):683-90. http://dx.doi.org/10.1007/s00384-015-2163-4. PMid:25694139.

26 Yoshida RA, Yoshida WB, Rollo HA, Kolvenbach R, Lorena SERS. Curva de aprendizado em cirurgia aórtica videolaparoscópica: estudo experimental em porcos. J Vasc Bras. 2008;7(3):231-8. http://dx.doi.org/10.1590/S1677-54492008000300008.

27 Nickel R, Schummer E, Seiferle E. The anatomy of the domestic animals: the circulatory system, the skin, and the cutaneous organs of the domestic mammals. Berlin: Springer-Verlag; 1981. p. 72-73. (vol. 3).

28 Rosow DE, Sahani D, Strobel O, et al. Imaging of acute mesenteric ischemia using multidetector CT and CT angiography in a porcine model. J Gastrointest Surg. 2005;9(9):1262-75. http://dx.doi.org/10.1016/j.gassur.2005.07.034. PMid:16332482.

29 White JM, Cannon JW, Stannard A, Markov NP, Spencer JR, Rasmussen TE. Endovascular balloon occlusion of the aorta is superior to resuscitative thoracotomy with aortic clamping in a porcine model of hemorrhagic shock. Surgery. 2011;150(3):400-9. http://dx.doi.org/10.1016/j.surg.2011.06.010. PMid:21878225.

30 Chen Y, Tillman B, Go C, et al. A novel customizable stent graft that contains a stretchable ePTFE with a laser-welded nitinol stent. J Biomed Mater Res B Appl Biomater. 2019;107(4):911-23. http://dx.doi.org/10.1002/jbm.b.34186. PMid:30176119.

31 Prata MP, Jaldin RG, Lourenção PLTA, et al. Lesão aguda da parede arterial provocada pelo método de interrupção temporária de fluxo em diferentes vias de cirurgia aórtica: estudo morfológico e biomecânico da aorta de porcos. J Vasc Bras. 2020;19:e20190025. http://dx.doi.org/10.1590/1677-5449.190025. PMid:32499823.

32 Smith SA, McAlister VC. A novel REBOA system: prototype and proof of concept. Can J Surg. 2018;6(6):188-94. PMid:30417720.

33 Borger van der Burg BLS, van Schaik J, Brouwers JJWM, et al. Migration of Aortic Occlusion Balloons in an in vitro model of the human circulation. Injury. 2019;50(2):286-91. http://dx.doi.org/10.1016/j.injury.2018.12.026. PMid:30594315.

34 Che H, Jiang J, Liu H, Wei J, Zhang X. Preliminary report of a new type of braided vein stent in animals. Phlebology. 2019;34(4):246-56. http://dx.doi.org/10.1177/0268355518801172. PMid:30227789.

35 Kuckelman JP, Barron M, Moe D, et al. Extending the golden hour for Zone 1 resuscitative endovascular balloon occlusion of the aorta: Improved survival and reperfusion injury with intermittent versus continuous resuscitative endovascular balloon occlusion of the aorta of the aorta in a porcine severe truncal hemorrhage model. J Trauma Acute Care Surg. 2018;85(2):318-26. http://dx.doi.org/10.1097/TA.0000000000001964. PMid:30080780.

36 Reva VA, Matsumura Y, Samokhvalov IM, et al. Defining degree of aortic occlusion for partial-REBOA: a computed tomography study on large animals. Injury. 2018;49(6):1058-63. http://dx.doi.org/10.1016/j.injury.2018.04.021. PMid:29699730.

37 Reva VA, Matsumura Y, Hörer T, et al. Resuscitative endovascular balloon occlusion of the aorta: what is the optimum occlusion time in an ovine model of hemorrhagic shock? Eur J Trauma Emerg Surg. 2018;44(4):511-8. http://dx.doi.org/10.1007/s00068-016-0732-z. PMid:27738726.

38 Lam JH, O’Sullivan TD, Park TS, et al. Non-invasive dual-channel broadband diffuse optical spectroscopy of massive hemorrhage and Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) in swine. Mil Med. 2018;183(Suppl 1):150-6. http://dx.doi.org/10.1093/milmed/usx163. PMid:29635570.

39 Eggers MD, McArthur MJ, Figueira TA, et al. Pilot in vivo study of an absorbable polydioxanone vena cava filter. J Vasc Surg Venous Lymphat Disord. 2015;3(4):409-20. http://dx.doi.org/10.1016/j.jvsv.2015.03.004. PMid:26992619.

40 Wang Z, Ashley DW, Kong L, Kang J, Nakayama DK, Dale PS. Nuclear factor-κB is activated in filter-implanted vena cava. Cardiovasc Intervent Radiol. 2019;42(4):601-7. http://dx.doi.org/10.1007/s00270-018-2138-2. PMid:30535787.
 


Submitted date:
06/15/2020

Accepted date:
08/26/2020

609c19dea953950b1c540e69 jvb Articles

J Vasc Bras

Share this page
Page Sections