Jornal Vascular Brasileiro
Jornal Vascular Brasileiro
Original Article

Associations between new and old anthropometric indices with type 2 diabetes mellitus and risk of metabolic complications: a cross-sectional analytical study

Associação de índices antropométricos novos e antigos com diabetes melito tipo 2 e risco de complicações metabólicas: um estudo analítico de corte transversal

Parichehr Amiri; Ahmad Zare Javid; Leila Moradi; Neda Haghighat; Rahim Moradi; Hossein Bavi Behbahani; Milad Zarrin; Hadi Bazyar

Downloads: 0
Views: 218


Abstract: Background: Obesity can increase the risk of diabetes mellitus and complications associated with it.

Objectives: The aim of this study was to estimate the associations between new and old anthropometric indices and the risk of type 2 diabetes mellitus (T2DM) and its metabolic complications.

Methods: In this cross-sectional analytical study, 110 T2DM subjects and 110 healthy controls were selected by convenience sampling. Metabolic factors were evaluated including the atherogenic index of plasma (AIP), glycemic status, lipid profile, blood pressure, kidney indices, new anthropometric indices (abdominal volume index [AVI], body shape index [ABSI], lipid accumulation product [LAP], body adiposity index [BAI], and conicity index [CI]), and old anthropometric indices (weight, body mass index [BMI], and waist and hip circumference [WC and HC]).

Results: Significant positive correlations were observed between AVI, LAP, and BAI and fasting blood glucose and HbA1c in the T2DM group (p < 0.001 for all associations). The odds ratio (OR) for T2DM elevated significantly with increasing BMI (OR: 1.30, 95% CI: 1.20-1.42), LAP (OR: 1.20, 95% CI: 1.13-1.27), and BAI (OR: 1.32, 95% CI: 1.21-1.43). The indices AVI (OR: 1.90, 95% CI: 1.57-2.29), LAP (OR: 1.19, 95% CI: 1.13-1.27), BAI (OR: 1.19, 95% CI: 1.12-1.26), WC (OR: 1.29, 95% CI: 1.18, 1.42), and HC (OR: 1.07, 95% CI: 1.01, 1.14) significantly increased the risk of metabolic syndrome (MetS).

Conclusions: Associations were identified between obesity indices and diabetes. These indices could be used in clinical practice for evaluation and control of T2DM.


anthropometry, obesity, type 2 diabetes mellitus, measures of association, exposure, risk or outcome


Resumo: Contexto: A obesidade pode aumentar o risco de diabetes melito e complicações associadas.

Objetivos: O objetivo deste estudo foi estimar a associação de índices antropométricos novos e antigos com o risco de diabetes melito tipo 2 (DM2) e suas complicações metabólicas.

Métodos: Neste estudo analítico transversal, 110 indivíduos com DM2 e 110 controles saudáveis foram selecionados por amostragem de conveniência. Foram avaliados os fatores metabólicos, incluindo índice aterogênico plasmático, estado glicêmico, perfil lipídico, pressão arterial, índices renais, índices antropométricos novos [índice de volume abdominal (AVI), índice de formato corporal (ABSI), produto de acumulação lipídica (LAP), índice de adiposidade corporal (BAI) e índice de conicidade (CI)] e índices antropométricos antigos [peso, índice de massa corporal (IMC), circunferência de cintura e quadril].

Resultados: Foi observada uma correlação positiva significativa de AVI, LAP e BAI com glicemia de jejum e hemoglobina glicada no grupo DM2 (p para todos < 0,001). A odds ratio (OR) do grupo DM2 foi significativamente elevada com aumento de IMC [OR: 1,30, intervalo de confiança (IC) de 95%: 1,20-1,42], LAP (OR: 1,20, IC95%: 1,13-1,27) e BAI (OR: 1,32, IC95%: 1,21-1,43). Os índices AVI (OR: 1,90, IC95%: 1,57-2,29), LAP (OR: 1,19, IC95%: 1,13-1,27), BAI (OR: 1,19, IC95%: 1,12-1,26), WC (OR: 1,29, IC95%: 1,18-1,42) e HC (OR: 1,07, IC95%: 1,01-1,14) aumentaram significativamente o risco de síndrome metabólica.

Conclusões: Foi reconhecida uma associação entre índices de obesidade e diabetes. Esses índices podem ser usados na prática clínica para avaliação e controle do DM2.


antropometria, obesidade, diabetes melito tipo 2, medidas de associação, exposição, risco ou resultado


1 Javid AZ, Bazyar H, Gholinezhad H, et al. The effects of ginger supplementation on inflammatory, antioxidant, and periodontal parameters in type 2 diabetes mellitus patients with chronic periodontitis under non-surgical periodontal therapy. A double-blind, placebo-controlled trial. Diabetes Metab Syndr Obes. 2019;12:1751-61. PMid:32021341.

2 Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. PMid:29219149.

3 Ahmed T, Haboubi N. Assessment and management of nutrition in older people and its importance to health. Clin Interv Aging. 2010;5:207-16. PMid:20711440.

4 Cardoso CRL, Leite NC, Moram CBM, Salles GF. Long-term visit-to-visit glycemic variability as predictor of micro-and macrovascular complications in patients with type 2 diabetes: the Rio de Janeiro Type 2 Diabetes Cohort Study. Cardiovasc Diabetol. 2018;17(1):33. PMid:29477146.

5 Hosseini SA, Alipour M, Zakerkish M, Cheraghian B, Ghandil P. The gene-treatment interaction of FTO‐rs9939609 Gene Polymorphism and Epigallocatechin-Gallate intervention on anthropometric indices, fasting blood sugar and insulin resistance/sensitivity in patients with Type 2 Diabetes Mellitus. Iran Red Crescent Med J. 2018;20(12):e82228.

6 Park KS. The search for genetic risk factors of type 2 diabetes mellitus. Diabetes Metab J. 2011;35(1):12-22. PMid:21537408.

7 Dendup T, Feng X, Clingan S, Astell-Burt T. Environmental risk factors for developing Type 2 Diabetes Mellitus: a systematic review. Int J Environ Res Public Health. 2018;15(1):78. PMid:29304014.

8 Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world—a growing challenge. N Engl J Med. 2007;356(3):213-5. PMid:17229948.

9 Kahn HS. The lipid accumulation product is better than BMI for identifying diabetes: a population-based comparison. Diabetes Care. 2006;29(1):151-3. PMid:16373916.

10 Hosseini SA, Aghamohammadi V, Ashtary-Larky D, Alipour M, Ghanavati M, Lamuchi-Deli N. Jovens iranianas obesas metabolicamente saudáveis têm maior risco de incidência de DCV? J Vasc Bras. 2020;19:e20190106. PMid:34290747.

11 Hanson RL, Imperatore G, Bennett PH, Knowler WC. Components of the metabolic syndrome and incidence of type2 diabetes. Diabetes. 2002;51(10):3120-7. PMid:12351457.

12 Rios MS. Relationship between obesity and the increased risk of major complications in non‐insulin‐dependent diabetes mellitus. Eur J Clin Invest. 1998;28(suppl 2):14-8. PMid:9777322.

13 Abolnezhadian F, Hosseini SA, Alipour M, et al. Association metabolic obesity phenotypes with cardiometabolic index, atherogenic index of plasma and novel anthropometric indices: a link of FTO-rs9939609 polymorphism. Vasc Health Risk Manag. 2020;16:249-56. PMid:32612360.

14 Marcadenti A, Fuchs FD, Moreira LB, Fuchs SC. Lipid accumulation product index (LAP), body adiposity index (BAI), neck circumference and type-2 diabetes in subjects with hypertension. Arq Bras Cardiol. 2013;101:1-18.

15 Azizi F, Khalili D, Aghajani H, et al. Appropriate waist circumference cut-off points among Iranian adults: the first report of the Iranian National Committee of Obesity. Arch Iran Med. 2010;13(3):243-4. PMid:20433230.

16 Alberti K, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120(16):1640-5. PMid:19805654.

17 Alberti KGMM, Zimmet P, Shaw J. International Diabetes Federation: a consensus on Type 2 diabetes prevention. Diabet Med. 2007;24(5):451-63. PMid:17470191.

18 Adu EA, Obirikorang C, Acheampong E, et al. Lipid accumulation product (LAP) index as a potential risk assessment for cardiovascular risk stratification among type II diabetes mellitus in a Ghanaian population: a cross-sectional study. Cogent Med. 2019;6(1):1639880.

19 Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381-95. PMid:12900694.

20 Kengne A-P, Czernichow S, Huxley R, et al. Blood pressure variables and cardiovascular risk: new findings from ADVANCE. Hypertension. 2009;54(2):399-404. PMid:19470869.

21 Fuhrman DY, Schneider MF, Dell KM, et al. Albuminuria, proteinuria, and renal disease progression in children with CKD. Clin J Am Soc Nephrol. 2017;12(6):912-20. PMid:28546440.

22 Knopfholz J, Disserol CCD, Pierin AJ, et al. Validation of the friedewald formula in patients with metabolic syndrome. Cholesterol. 2014;2014:261878.

23 Rahmanian K, Shojaei M. Relation of Pre-diabetes and Diabetes Mellitus and cardiovascular risk factors: a case-control study. J Jahrom Univ Med Sci. 2017;15(4):1-8.

24 Gomez-Peralta F, Abreu C, Cruz-Bravo M, et al. Relationship between “a body shape index (ABSI)” and body composition in obese patients with type 2 diabetes. Diabetol Metab Syndr. 2018;10(1):21. PMid:29568333.

25 Hardy DS, Stallings DT, Garvin J, Gachupin FC, Xu H, Racette SB. Anthropometric predictors of Type 2 Diabetes among white and black adults. In: American Diabetes Association’s 75th Scientific Sessions; 2015; Boston. Boston; 2015.

26 Krakauer NY, Krakauer JC. A new body shape index predicts mortality hazard independently of body mass index. PLoS One. 2012;7(7):e39504. PMid:22815707.

27 Guerrero-Romero F, Rodríguez-Morán M. Abdominal volume index. An anthropometry-based index for estimation of obesity is strongly related to impaired glucose tolerance and type 2 diabetes mellitus. Arch Med Res. 2003;34(5):428-32. PMid:14602511.

28 Ehrampoush E, Arasteh P, Homayounfar R, et al. New anthropometric indices or old ones: which is the better predictor of body fat? Diabetes Metab Syndr. 2017;11(4):257-63. PMid:27578617.

29 Vieira BA, Sauer P, Marcadenti A, Piovesan CH. Association between LAP Index (Lipid Accumulation Product) and metabolic profile in hospitalized patients. Nutr Hosp. 2015;31(6):2771-4. PMid:26040394.

30 Biyik Z, Guney I. Lipid accumulation product and visceral adiposity ındex: two new indices to predict metabolic syndrome in chronic kidney disease. Eur Rev Med Pharmacol Sci. 2019;23(5):2167-73. PMid:30915762.

31 Ghosh A, Bose K, Chaudhuri AB. Association of food patterns, central obesity measures and metabolic risk factors for coronary heart disease (CHD) in middle aged Bengalee Hindu men, Calcutta, India. Asia Pac J Clin Nutr. 2003;12(2):166-71. PMid:12810406.

32 Andrade MD, Freitas MC, Sakumoto AM, et al. Association of the conicity index with diabetes and hypertension in Brazilian women. Arch Endocrinol Metab. 2016;60(5):436-42. PMid:27812606.

33 Bergman R, Stefanovski D, Buchanan T, et al. A better index of body adiposity. Obes. 2011;9(5):1083-9.

34 Oliveira CM, Pavani J, Krieger JE, Alvim RO, Mourão-Junior CA, Pereira AC. Body adiposity index in assessing the risk of type 2 diabetes mellitus development: the Baependi Heart Study. Diabetol Metab Syndr. 2019;11(1):76. PMid:31485273.

35 López AA, Cespedes ML, Vicente T, et al. Body adiposity index utilization in a Spanish Mediterranean population: comparison with the body mass index. PLoS One. 2012;7(4):e35281. PMid:22496915.

Submitted date:

Accepted date:

Sociedade Brasileira de Angiologia e Cirurgia Vascular (SBACV)"> Sociedade Brasileira de Angiologia e Cirurgia Vascular (SBACV)">
615307aca9539535c8098ba3 jvb Articles
Links & Downloads

J Vasc Bras

Share this page
Page Sections